Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
nats → adx(zeros)
zeros → cons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
nats → adx(zeros)
zeros → cons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
nats → adx(zeros)
zeros → cons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
head(cons(X, L)) → X
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 1 + 2·x1
POL(incr(x1)) = x1
POL(n__adx(x1)) = 2·x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nats) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 2·x1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
nats → adx(zeros)
zeros → cons(0, n__zeros)
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
nats → adx(zeros)
zeros → cons(0, n__zeros)
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
adx(nil) → nil
nats → adx(zeros)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(incr(x1)) = x1
POL(n__adx(x1)) = 2·x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nats) = 2
POL(nil) = 1
POL(s(x1)) = x1
POL(tail(x1)) = 2·x1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
tail(cons(X, L)) → activate(L)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(activate(x1)) = x1
POL(adx(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(n__adx(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 1 + 2·x1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(activate(X))
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ACTIVATE(X)
ACTIVATE(n__zeros) → ZEROS
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(activate(X))
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ACTIVATE(X)
ACTIVATE(n__zeros) → ZEROS
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(activate(X))
ACTIVATE(n__incr(X)) → INCR(activate(X))
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__adx(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ACTIVATE(X)
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(ADX(x1)) = 2 + 2·x1
POL(INCR(x1)) = 2·x1
POL(activate(x1)) = x1
POL(adx(x1)) = 1 + x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(n__adx(x1)) = 1 + x1
POL(n__incr(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(activate(X))
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__adx(X)) → ADX(activate(X)) at position [0] we obtained the following new rules:
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__zeros)) → ADX(zeros)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(X)) → INCR(activate(X))
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__adx(n__zeros)) → ADX(zeros)
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__incr(X)) → INCR(activate(X)) at position [0] we obtained the following new rules:
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(n__zeros)) → INCR(zeros)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(n__zeros)) → INCR(zeros)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__zeros)) → ADX(zeros)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__adx(n__zeros)) → ADX(zeros) at position [0] we obtained the following new rules:
ACTIVATE(n__adx(n__zeros)) → ADX(n__zeros)
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(n__zeros)) → INCR(zeros)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__adx(n__zeros)) → ADX(n__zeros)
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(n__zeros)) → INCR(zeros)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__incr(n__zeros)) → INCR(zeros) at position [0] we obtained the following new rules:
ACTIVATE(n__incr(n__zeros)) → INCR(cons(0, n__zeros))
ACTIVATE(n__incr(n__zeros)) → INCR(n__zeros)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__zeros)) → INCR(n__zeros)
ACTIVATE(n__incr(n__zeros)) → INCR(cons(0, n__zeros))
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__zeros)) → INCR(cons(0, n__zeros))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__incr(n__zeros)) → INCR(cons(0, n__zeros))
The remaining pairs can at least be oriented weakly.
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
incr(X) → n__incr(X)
zeros → cons(0, n__zeros)
zeros → n__zeros
adx(X) → n__adx(X)
incr(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
activate(n__adx(X)) → adx(activate(X))
activate(n__incr(X)) → incr(activate(X))
activate(X) → X
activate(n__zeros) → zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__adx(x0))) → INCR(adx(activate(x0)))
ACTIVATE(n__adx(n__incr(x0))) → ADX(incr(activate(x0)))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__adx(x0)) → ADX(x0)
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
ACTIVATE(n__adx(n__adx(x0))) → ADX(adx(activate(x0)))
The TRS R consists of the following rules:
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeros → cons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zeros → n__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X
s = ACTIVATE(n__adx(activate(n__zeros))) evaluates to t =ACTIVATE(n__adx(activate(n__zeros)))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
ACTIVATE(n__adx(activate(n__zeros))) → ACTIVATE(n__adx(n__zeros))
with rule activate(X) → X at position [0,0] and matcher [X / n__zeros]
ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros))
with rule ACTIVATE(n__adx(n__zeros)) → ADX(cons(0, n__zeros)) at position [] and matcher [ ]
ADX(cons(0, n__zeros)) → INCR(cons(0, n__adx(activate(n__zeros))))
with rule ADX(cons(X', L')) → INCR(cons(X', n__adx(activate(L')))) at position [] and matcher [X' / 0, L' / n__zeros]
INCR(cons(0, n__adx(activate(n__zeros)))) → ACTIVATE(n__adx(activate(n__zeros)))
with rule INCR(cons(X, L)) → ACTIVATE(L)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.